Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504666

RESUMO

In this work, an attention-mechanism-enhanced method based on a single-stage object detection model was proposed and implemented for the problem of rice pest detection. A multi-scale feature fusion network was first constructed to improve the model's predictive accuracy when dealing with pests of different scales. Attention mechanisms were then introduced to enable the model to focus more on the pest areas in the images, significantly enhancing the model's performance. Additionally, a small knowledge distillation network was designed for edge computing scenarios, achieving a high inference speed while maintaining a high accuracy. Experimental verification on the IDADP dataset shows that the model outperforms current state-of-the-art object detection models in terms of precision, recall, accuracy, mAP, and FPS. Specifically, a mAP of 87.5% and an FPS value of 56 were achieved, significantly outperforming other comparative models. These results sufficiently demonstrate the effectiveness and superiority of the proposed method.

2.
Plants (Basel) ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447120

RESUMO

With the rapid development of artificial intelligence and deep learning technologies, their applications in the field of agriculture, particularly in plant disease detection, have become increasingly extensive. This study focuses on the high-precision detection of tomato diseases, which is of paramount importance for agricultural economic benefits and food safety. To achieve this aim, a tomato disease image dataset was first constructed, and a NanoSegmenter model based on the Transformer structure was proposed. Additionally, lightweight technologies, such as the inverted bottleneck technique, quantization, and sparse attention mechanism, were introduced to optimize the model's performance and computational efficiency. The experimental results demonstrated excellent performance of the model in tomato disease detection tasks, achieving a precision of 0.98, a recall of 0.97, and an mIoU of 0.95, while the computational efficiency reached an inference speed of 37 FPS. In summary, this study provides an effective solution for high-precision detection of tomato diseases and offers insights and references for future research.

3.
Plants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616330

RESUMO

Protecting crop yields is the most important aspect of agricultural production, and one of the important measures in preserving yields is the control of crop pests and diseases; therefore, the identification of crop pests and diseases is of irreplaceable importance. In recent years, with the maturity of computer vision technology, more possibilities have been provided for implementing plant disease detection. However, although deep learning methods are widely used in various computer vision tasks, there are still limitations and obstacles in practical applications. Traditional deep learning-based algorithms have some drawbacks in this research area: (1) Recognition accuracy and computational speed cannot be combined. (2) Different pest and disease features interfere with each other and reduce the accuracy of pest and disease diagnosis. (3) Most of the existing researches focus on the recognition efficiency and ignore the inference efficiency, which limits the practical production application. In this study, an integrated model integrating single-stage and two-stage target detection networks is proposed. The single-stage network is based on the YOLO network, and its internal structure is optimized; the two-stage network is based on the Faster-RCNN, and the target frame size is first clustered using a clustering algorithm in the candidate frame generation stage to improve the detection of small targets. Afterwards, the two models are integrated to perform the inference task. For training, we use transfer learning to improve the model training speed. Finally, among the 37 pests and 8 diseases detected, this model achieves 85.2% mAP, which is much higher than other comparative models. After that, we optimize the model for the poor detection categories and verify the generalization performance on open source datasets. In addition, in order to quickly apply this method to real-world scenarios, we developed an application embedded in this model for the mobile platform and put the model into practical agricultural use.

4.
Front Plant Sci ; 13: 787852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720576

RESUMO

Counting wheat heads is a time-consuming process in agricultural production, which is currently primarily carried out by humans. Manually identifying wheat heads and statistically analyzing the findings has a rigorous requirement for the workforce and is prone to error. With the advancement of machine vision technology, computer vision detection algorithms have made wheat head detection and counting feasible. To accomplish this traditional labor-intensive task and tackle various tricky matters in wheat images, a high-precision wheat head detection model with strong generalizability was presented based on a one-stage network structure. The model's structure was referred to as that of the YOLO network; meanwhile, several modules were added and adjusted in the backbone network. The one-stage backbone network received an attention module and a feature fusion module, and the Loss function was improved. When compared to various other mainstream object detection networks, our model outperforms them, with a mAP of 0.688. In addition, an iOS-based intelligent wheat head counting mobile app was created, which could calculate the number of wheat heads in images shot in an agricultural environment in less than a second.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28914778

RESUMO

In order to protect public health and crops from soil heavy metal (HM) contamination at a coal mining area in Henan, central China, HM pollution investigation and screening of autochthonous HM phytoextractors were conducted. The concentrations of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) in surface soils exceeded the corresponding local background values and the China National Standard (CNS). The maximum potential ecological risk (RI) was 627.30, indicating very high ecological risk. The monomial risk of Cd contributed the most to the RI, varying from 85.48% to 96.48%. The plant community structure in the study area was simple, and was composed of 24 families, 37 genera and 40 species. B. pilosa, A. roxburghiana, A. argyi, A. hispidus were found to be the most dominant species at considerable risk sites. Based on the comprehensive analysis of Cd concentration, bioconcentration factor, translocation factor and adaptability factor, B. pilosa and A. argyi had potential for phytoextraction at considerable risk sites. A. roxburghiana had potential for Cd phytoextraction at moderately risk sites and A. hispidus seemed suitable for phytostabilization. The results could contribute to the phytoremediation of the similar sites.


Assuntos
Minas de Carvão , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , China , Produtos Agrícolas , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...